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A fast and accurate method for computing temperature-corrected photon-Maxwellian 
electron cross sections with distribution averaged electron energies and scattering angles in 
presented. Use is made of the covariant (frame indepedent) picture of scattering for relativistic 
electrons. The scheme is motivated and detailed, predictions are obtained and compared with 
exact values and appropriate limiting forms which retain the Thomson and Klein-Nishina 
cross section structure are also recovered. The method is amenable to further pointwise 
(Monte Carlo) or multigroup (S,) cross section processing. A two parameter fit to the 
relativistic cross sections is also described that resembles the Klein-Nishina formula in 
structure and can be used to generate temperature corrections within existning static electron 
algorithms. 

1. INTRODUCTION 

Photon downscatter (Compton) and upscatter (inverse Compton) from Maxwellian 
electrons is an important feature of radiative transport calculations in both Monte 
Carlo and discrete ordinates applications. The general description of photon- 
Maxwellian electron scattering is numerically complex and computationally time 
consuming. It is our purpose to describe a fast and accurate method for generating 
effective radiative transfer kernels for relativistic Maxwellian electrons and to 
compare predictions with exact results. Appropriate limiting forms are also recovered. 
Use is made of the covariant (frame independent) picture of scattering [ 1 ] and the 
distribution averaged electron energies and scattering angles 121. The scheme is 
motivated and detailed, predictions are compared and limiting forms which recover 
the well-known Thomson and Klein-Nishina [3] formulas are also exhibited with 
temperature corrections. This approach serves as a useful alternative to time 
consuming numerical integration of the 5dimensional Lorentz kernel [4,5] and as an 
exact alternative to low-order expansions [5-71 in temperature or incidient photon 
energy. The equations are directly amenable to pointwise or multigroup implemen- 
tation in Monte Carlo or S, transport codes [S-lo]. Much of the following analysis 
has been implemented and tailored for use in Los Alamos based transport modules. 
Stimulated emission, of course, is ignored in the analysis. 

We considered three related segments in the following scheme. The first is a lowest 
order, zero electron momentum approximation which imparts small temperature 
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corrections to the usual, stationary Klein-Nishina cross section. For incident photon 
energy greater than the background electron temperature, it is simple and accurate. 
The second approach extends the low energy approximation by assuming that the 
distributionally averaged photon scattering angle is zero but relaxes the requirement 
of zero electron momentum. The second approach works very well for incident 
photon energy less than, or close to, the background electron temperature. Finally, in 
an effort to simplify matters further, a two parameter fit to the differential cross 
section is proposed and described. The fit equation resembles the well-known 
stationary electron expression (with only one angular dependence) and is useful in 
computational algorithms that already employ, or sample, the Klein-Nishina result 
(such as those used in Monte Carlo photonics). The two parameter fitted equations 
recover exact total cross sections to three significant figures over the full energy and 
temperature spectrum. We refer to these segments as the low energy, isotropic and 
fitted approximations, and have found all three useful in various radiative transport 
applications. 

Natural units (A = c = k = 1) are employed’both as a convenience and convention, 
that is, with h Planck’s constant, c the speed of light, and k Boltzmann’s constant. To 
convert the macroscopic cross sections defined herein to inverse mean free paths for 
radiation transport, one only needs to multiply all expressions by the electron number 
density. 

2. TRANSFER KERNELS AND KINEMATICS 

Denoting incoming photon and electron energies by v’ and F’ and outgoing photon 
and electron energies by v and E, with corresponding electron momenta p’, p, the 
relativistic energy balance equation for scattering can be expressed as [ 1, 11, 121, 

E’V’ -p/v’ cos a’ = vv’( 1 - cos 0) + E’V - p’v cos a (1) 
with, 

cosa=cosa’cosO+sina’sinOcos$, (2) 

where a’ and a are the angles between incident electron and incident and final 
photons, 0 is the angle between incident and final photons, and $ is the azimuthal 
orientation of the scattered photon. Alternatively, Eq. (1) can also be written as, 

e2 = Et2 + v2 + v” + 2p’v’ cos a’ - 2p’v cos a - 2vv’ cos 0. (3) 

Equations (1) and (3) accommodate upscatter and downscatter. 
The Lorentz invariant kernel for scattering of an incident photon of energy v’ from 

a background Maxwellian electron distributionf(p’) takes the form [ 11, 12 ] 

a=a --=$jd’p’/(p’) ($-) aa av 
(4) 

X d[&‘v’ -p’v’ cos a’ - vv'(1 - cos O)- E'V + p’vcos aI K 
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with, 

Ic= (F/--p’ 
m4( 1 - cos 0)2 2mZ( 1 - cos 0) 
cos cl’)* (E’ -p’cos a)’ - (E’ -p’ cos ct’)(&’ -p’ cos a) 

+ ~‘(6’ -p’ cos a’) 
+ 

~(6’ - p’ cos a) 
v(E’ - p’ cos a) ~‘(8’ -p’ cos a’) ’ 

(5) 

Equation (4) is a Lorentz scalar in all coordinate frames. In the rest frame of the 
electron or for stationary electrons in the laboratory (p’ = 0, E’ = m), Eq. (4) reduces 
to the classical Klein-Nishina law. In the above, r0 is the classical electron radius 
and m is the electron rest mass. The relativistic momentum distribution is taken to be 
the Maxwellian expression, 

with, 

f(p’) = (4r-g~~’ exp(-(p’* + m2)1”/T] 

y = rn2TK2(m/T) 

(6) 

(7) 

for K, the modified Bessel function and T the temperature. 
Pomraning [ 131 has detailed a velocity representation of the effective scattering 

kernel which we have shown ] 141 to be equivalent to Eq. (4), we do not recount the 
procedure here. Both representations are relativistic but Eq. (4) is more convenient 
for our purposes, Note also that apart from the kinematical factors (E’ -p’ cos a’) 
and (E’ -p’ cos a), the scattering kernel equation (5) has been cast in the Klein- 
Nishina form with one exception. The kinematical equation (1) permits both 
upscatter and downscatter whereas the usual Compton law only allows downscatter. 

The integration over d3p’ da dv in Eq. 4 is formidable. The S-function permits one 
integration over dv trivially. At best, one is faced with a 4-dimensional integration 
which is time consuming even on supercomputers such as the Cray-I. Typical 
Cray-I run times for evaluation of the cross section r~ using Eq. (4) directly average 
l-2 min using nested adaptive quadrature routines. In production transport codes, 
one is not allowed the luxury of minutes for pointwise cross section processing and 
obviously a fast and accurate scheme is necessary. In the following we detail a 
scheme which permits efficient evaluation of Eq. (4) and uses the distribution 
weighted (averaged) electron momenta and scattering angles to replace the tedious 
integration over d3p’. Operationally, one replaces the Maxwellian distribution with 

f(p,) = 4P’ - W>> &cos a’ - (~0s a’)) 
27rpr* (8) 

for (p’) and (cos a’) the appropriately determined mean electron momentum and 
scattering angle. Before considering the scheme, we turn to integration of the energy 
b-function and determination of various moments of the Maxwellian distribution. 
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Invoking the operational definition for arbitrary function g, 

d(g)= E 
I I 

-1 

4v - vo> 

% 

with g(v,,) = 0 and, 

(9) 

1 V 

-- v’( 1 - cos 0) + E’ - p’ cos a 6’~’ -p’v’ cos a’ ’ 
(10) 

we recast Eq. (4) in the convenient form after integrating over dv, 

(11) 

It will also be advantageous to introduce the dimensionless parameters K, K, , and K*, 

K,m = E’ -p’ COS a’ = Km - (K2 - 1)1’2 m cos a’, 

K2m = E’ -p’ cos a = Km - (K’ - 1)112 m cos a, 

(12) 

so that Eq. (1) takes the simple form, 

K1 mv’ = vv’( 1 - cos 0) + KzrnV, (13) 

in analogy with the Compton expression. For K, > K~, upscatter is kinematically 
possible while for K, < ICY only downscatter results. For ICY = ICY = K = 1 (&’ = m, 
p’ = 0), the classical Compton law is recovered. 

3. RELATIVISTIC MAXWELLIAN ELECTRON DISTRIBUTION 

The previously defined relativistic Maxwellian electron distribution function f(p’), 
was written, 

f(p’) = (4ny)-1exp[-(p’2 + m’)“‘/T] 

with T the absolute temperature and y the normalization constant, 

(14) 

y=“y exp[-(p’2 + m2)“‘/T] p” dp’. (15) 
0 

Defining the nth normalized moment off as 

(p’“) = yP1 lam exp[-(pJ2 + m2)1/2/T]ptn+2 dp’, (16) 
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we have shown [2] by transforming to energy space, 

y = mZTK,(mIT), 

(17) 

(P’“) =mP b (l;l-j/Ql/2)J (2mT)‘“t2”2 K(n+4),2(m/T), 

with K the modified Bessel functions and r the Euler functions. 
For low temperazture m/T >> 1, it follows [ 1.5) that 

(18) 

which are precisely the classical, nonrelativistic values. Furthermore, for p’/m @ 1, 

(p’2+m2)‘/2-m 1 +$...I 
( 

so that we recover the nonrelativistic law from Eqs. (14), (18), and (19), 

f(p’) - (2zmT)-3’2 exp(-p’2/2mT). (20) 

Higher order terms in Eqs. (18) and (19) are the temperature and relativistic 
corrections. 

4. Low ENERGY APPROXIMATION AND SOME LIMITING FORMS 

Rather than perform the 3-dimensional integration overf(p’), we replace the kernel 
with an appropriately averaged expression for (p’) and (cos a’) using Eq. (8). The 
energy (E’) and momentum (p’) are easily obtained from Eqs. (17), so that Eqs. (12) 
are recast, 

rcm=(c’)= I(p’2)+m2]“2= (21) 

5x1.53!* 9 
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and, 

K, m = Km + (K2 - l)i’2 m(cos cz’), K*rn = Km + (K* - l)i’* m cos a, (22) 

with, 

cos a = (cos a’) cos 0 + (sin a’) sin 0 cos 4. (23) 

While it is possible to obtain (E’), (p’), and K directly from Eq. (21), evaluation of 
(cos a’) is not generally possible analytically. In the following we examine the 
(cos a’) -+ 0 case and in a later section consider a bootstrap fit to (cos a’) over a 
range of energies and temperatures. Equation (11) thus becomes, using Eqs. (8) 
(21)-(23) and integrating over d$’ trivially, 

g= (2) (&) (+)‘A-, 

K= (1 -CO&)* 2(1 -COS0) + K,V’ + K2V 
(24) 

(ICI K2)* - (K1 K2) K2V K,V” 

with, from Eq. (13), 

V c i Kim 
-7 
V = v’( 1 - cos 0) + K*rn ’ 

(25) 

Experience has shown that Eqs. (21~(25) provide a relatively simple and accurate 
representation for describing photon-Maxwellian electron scattering [ 1, 2, 10, 111. 
Consider the low energy approximation and recovery of some well-known results. 

In the low energy limit, (K* - 1)“’ -+ 0, K = K, = K*, we find from Eq. (24) 

which is the temperature corrected Klein-Nishina law. The usual Klein-Nishina 
expression obtains for k = 1. For low incident photon energy, V’ -0, we have from 
m. (25h 

lim ?- = lim 
i ) 

Km 
=I 

V’GO v’ v’+O v’(1 - cos 0) + Km 
(27) 

so that the temperature-corrected Thomson cross section becomes, using Eq. (26), 

(28) 
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with IC = 1 the classical result. In the high energy regime, v’ + co, only the second 
last term of Eq. (26) survives and we deduce the temperature modified Bjorken [ 171 
relationship, 

Comparisons of approximate low energy total cross sections obtained from Eq. 
(26) and exact predictions from Eq. (11) appear in Figs. 1 and 2. Best agreement 
occurs for v’ > T since the incident photon tends to view most of the electrons as 
stationary. As v’ < T, many electrons upscatter the incident photon and the low- 
energy scheme falls short of predicting the total cross section. In the above and 
following calculations, 

r2 = 0 07938 x lo-*’ cm’, 0 * (30) 

and photon energies and electron temperatures range, 

OkeV< T< lOOkeV, 

0 keV < v’ < 1 MeV. 
(31) 

As T becomes small, both sets of cross sections give the Klein-Nishina limit as 
required (a = v//m), 

0 = 271ri 1 ft I (1 +a> k-7 1 41 + 24 + 
Cl+4 1 . a (1 + 2a)2 1 (32) 

FIG. 1. Low energy total cross section (T= I keV). Solid line, exact; dotted line, low energy 
approximation. 
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FIG. 2. Low energy total cross section (T= 10 keV). Solid line, exact; dotted line. low energy 
approximation. 

As both v’, T approach zero, both sets approach the Thomson limit, 

o = S&/3. (33) 

5. ISOTROPIC SCATTERING APPROXIMATION 

The low energy (p’ -+ 0) cross sections exhibited in Figs. 1 and 2 are not adequate 
as V’ < T, a situation in which a significant portion of the electrons upscatter the 
incident photon. The p’ -+ 0 limit drops all terms involving (cos a’) and cos a out of 
Eqs. (22) and (23), so that resulting expressions are really temperature corrected, 
static (Klein-Nishina-like) predictions, good for v’ > T. The next higher order scheme 
is probably obvious and is based on a simple physical argument. 

Except for very large differences between v’ and T, one might reasonably argue 
that the photon views the electron distribution isotropically as far as an average 
scattering angle is concerned. Therefore, in the isotropic approximation (p’ # 0), we 
take, 

(cosa’)=O, (34) 

as our starting point, so that Eqs. (22) and (23) are recast, 

(35) 
fc,m=fcm, 

fcZm=Km-(~2-1)“2mcosa, 
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and 

cos a = sin 0 cos 4. (36) 

The balance equation, Eq. (13), now admits upscatter and downscatter as 0 < # < 2n 
while the differential cross section depends explicitly on both 0 and 4 in a more 
complex manner. The isotropic approximation, (cos a’) + 0, is excellent as can be 
seen in Figs. 3 and 4 which plot exact (solid lines) cross sections from Eq. (1 I) 
against Eq. (24) using Eqs. (35) and (36) (dotted lines). Agreement at the 2-3% level 
is seen over depicted ranges. In analogy with Eq. (26), we write in the isotropic limit, 

with. 

V i 1 Km 

7 
V =v’(l-COS~)+Km-(K2-1)1’2msin~cos~’ 

To scope agreement in differential parameters, Figs. 5-8 plot au/a@ using Eqs. (11) 
and (37) for various incident photon energies and temperatures. Clearly, best 
agreement in the differential cross sections, as with the total cross sections, occurs for 
v’ > T. Agreement overall is still good. 

The added price for this agreement, however, is the introduction of an azimuthal 
dependence in the differential cross section. Next we will examine a representation for 

FIG. 3. Isotropic total cross section (7’= 10 keV). Solid line. exact; dotted line, isotropic approx- 
imation. 
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FIG. 4. Isotropic total cross section (T= 100 keV). Solid line, dotted line, isotropic approximation. 

which all angular dependences, except the usual cos 0 terms, have been averaged out 
of the explicit expressions for ICY and IC*. Such an approach amounts to an energy 
parameter fit to the differential cross section, Eq. (24), using K, and IC* that easily 
and directly replaces code algorithms that employ the Klein-Nishina expression 
(T=O). 

FIG. 5. Isotropic differential cross section (T= 1 keV, photon energy = 1 keV). Solid line, exact; 
dotted line, isotropic approximation. 
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FIG. 6. Isotropic differential cross section (T= 100 keV, photon energy = 1 keV). Solid line, exact; 
dotted line, isotropic approximation. 
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FIG. I. Isotropic differential cross section (T= 1 keV, photon energy = 1000 keV). Solid line, exact; 
dotted line, isotropic approximation. 
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FIG. 8. Isotropic differential cross section (T= 100 keV. photon energy = 1000 keV). Solid line, 
exact; dotted line, isotropic approximation. 

6. FITTED APPROXIMATION 

Rather than performing the time consuming numerical integrations over cos a’ and 
4 in Eq. (5) or over 4 in Eq. (24) with (cos GL’) = 0, it is tempting and advantageous 
to treat IC, and rc2 as a set of fitting parameters to either differential, or total, cross 
sections. All bothersome intermediate angular integrations are effectively averaged 
out of the calculation and eliminated. The resulting kernel is Klein-Nishina-like and 
written, in the fitted approximation, as, 

(39) 

with IC still given by Eq. (21) and, 

@I) m 
(40) 

= v’( 1 - cos 0) + (K~) m ’ 

for (or) and (K*) arbitrary at this point. Equations (39) and (40) with K = (IC,) = 
(K*) = 1 are already employed in many applications codes. Tabulation of temperature 
corrected values of (or) and (K*) would obviously permit easy operational extension 
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FIG. 9. Total cross section fitting parameter for various temperatures. 

of the static algorithms to include scattering from a Maxwellian electron background 
at little or no added computing price. As before, (K,) > (K*) underscores photon 
upscatter in energy while (K~) < (K~) tags downscatter. Any tit to the exact cross 
sections over photon energies and electron temperatures should reasonably reflect 
those kinematics on the average. Additionally, as the temperature approaches zero, 
one expects (K,)+ (K~)-+ 1. 

Integrating Eq. (39) exactly yields a functional form with which we fit the exact 
cross sections over the ranges indicated in Eqs. (31) subject to the foregoing 
constraints and the additional simplification, 

(‘6) = ‘G (41) 

suggested by Eq. (22) in averaging cos a freely over 4 in the (cos a’) -0 limit. Alter- 
natively, one might view Eq. (41) as a convenient starting point. Results of this 
parametrization appear in Fig. 9 which plots (K,) versus v’ for T= 1, 10, 25, 50, and 
100 keV, or, equivalently from Eq. 21, for K = 1.002, 1.030, 1.079, 1.170, 1.381. This 
lit reproduces the total cross sections to 3 significant figures. Correspondingly Jfted 
differential cross predictions are roughly the same as those depicted in Figs. 5-8 in 
Section 5, though not quite as good for increasing temperature. Note in Fig. 9 that as 
the background electron temperatures increase relative to the incident photon energy, 
(K,) increases, and that as temperatures get small, (K,)+ 1, consistent with the 
scattering physics. 

The fitted Eqs. (39) and (40) from Fig. 9 are useful temperature-corrected 
replacements for stationary electron algorithms when the low energy, approach is not 
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accurate enough and the isotropic scheme, with extra integration over 4, is costlier 
than desired. 

7. CONCLUSIONS 

We have examined a fast and accurate scheme for generating photon-Maxwellian 
electron cross sections in both low energy, p’ + 0, and isotropic, (cos a’) + 0, limits. 
Best results obtain for v’ > T in both cases, but the isotropic approximation yields 
excellent results over the full range of investigation, 0 < v’ < 1 MeV, 
0 < T < 100 keV. The forms of the depicted differential and total cross sections are 
suitable for pointwise implementation in Monte Carlo transport codes or further 
multigroup [ 181 processing in S, transport codes. Well-known limiting forms have 
also been recovered from the scheme. Results of the study indicate that the isotropic 
approximation is accurate at the 3n% level for T/v’ < 10” as far as total cross 
section predictions. Differential cross section predictions scale in roughly similar 
proportions. Using the isotropic approximation as a starting point, the results suggest 
the validity of a two parameter fit, employing K, and K*, over appropriate 
temperature and photon energy ranges. A relatively simple parametrization of K, and 
K* as a function of v’ and T, with all intermediate angular dependences eliminated, 
was obtained in the fitted approximation. Resulting differential cross sections only 
depend on cos 0, in analogy with the usual Klein-Nishina relationship. 

As a final remark, we mention that a number of production codes [ 191 keyed to 
Eqs. (1 1), (24), and (37) have been constructed and are available to interested users 
on request. 
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